
Differential Invariants of Curves and Surfaces in Two and 
Three-Dimensional Geometries

chemi
Confidential



Abstract

We employ the Fels-Olver moving frame method to generate differential invariants of curves and
surfaces in two and three-dimensional geometries.
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Chapter 1

Introduction

1.1 Historical

In Felix Klein’s famed Erlangen Program he proposed that a geometry is determined by a collection
of geometric transformations that act in a prescribed manner on a collection of points. The study of
a geometric space is then carried out by studying the properties of the space and geometric objects
in the space that remain invariant under the geometric transformations determining the geometry.
While Klein’s view on geometry is overarching and broad, it is familiar to almost everyone from
their high school studies of mathematics and Euclidean geometry.

In the case of planar Euclidean geometry, the collection of points is agreed upon to be the points
of a two-dimensional plane. The collection of geometric transformations determining Euclidean
geometry consist of rotations and translations of the plane. Without specifying any other informa-
tion, all of the hallmarks of Euclidean geometry can be deduced from its defining transformations.
Studying Euclidean geometry from the point of Klein leads one to the basic invariants of Euclidean
geometry: the distance between points and the angle between vectors (or line segments). Specifi-
cally, given a Euclidean transformation T and two points P and Q in the Euclidean plane, we can
measure the distance d(P,Q) between two points P and Q before the geometric transformation T
is applied, or we can measure the distance d(P 0, Q0) between the transformed points T (P ) = P 0

and T (Q) = Q0 after the translation and we know that the distances will be identical. Likewise, we
can measure the angle between two line segments PQ and PR determined by three distinct points
P,Q, and R before a geometric transformation is applied or we can measure the angle between the
line segments P 0Q0 and P 0R0 determined by the transformed points and we know that the measure
of the indicated angles will be equal. It is in this sense that distance measure and angle measure
are invariants of the geometric transformations that define Euclidean geometry.

In addition to being important in their own right, the invariants of a geometry can be used to
study geometric objects determined by the underlying collection of points. Again calling on the
standard study of Euclidean geometry from high school, the invariants of distance measure and
angle measure allow us to completely classify triangles up to congruence. That is, we are able to use
the invariants of Euclidean geometry to determine when two triangles 4ABC and 4PQR differ
only by their location in the plane and not in a fundamental way. Said differently, we are able to use
the invariants of Euclidean geometry to determine when there exists a geometric transformation of
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Euclidean geometry that will carry triangle 4ABC to triangle 4PQR, bringing point A to point
P , point B to point Q and point C to point R. Examples of such conditions include the Side-
Side-Side, Side-Angle-Side, Angle-Angle-Side, and Angle-Side-Angle conditions for the congruence
of triangles. Note that this means that we are able to tell when two triangles 4ABC and 4PQR
differ only by their location in space by measuring three invariant conditions of the triangle without

needing to try all possible geometric transformations to determine whether there exists one which
brings triangle 4ABC to 4PQR.

The use of the invariants of a geometry to inform the study of the geometry extends beyond
the study of geometric objects determined by a finite collection of points. In the study of planar
Euclidean geometry, additional geometric of objects of interest are curves determined by a contin-
uous collection of points. The arc length along a (directed) curve C between two points P and
Q on the curve C is again an invariant, as is the arc length of the curve C itself. Additional in-
variants for (directed) curves are then found by checking how the direction of motion changes as
one moves along the curve C. As is the case for triangles in the Euclidean plane, the invariants
of a curve C can be used to determine when two curves C and C

0 are congruent and differ only by
their location in the plane. The details leading to this fundamental theorem are outlined below.
Any standard textbook ([1],[13], [14]) the geometry of curves in the plane can be used as a reference.

Let C be a regular directed curve �(s) = (x(s), y(s)) parametrized by arc length. The tangent
vector ~t(s) = d�

ds =
⇣
dx
ds ,

dy
ds

⌘
always points in the direction of motion and is of unit length when

the curve C is parametrized by arc length. There is a well-defined normal vector ~n(s) along the
curve C that is a 90� rotation of ~t(s) in the counterclockwise direction. The pair of vectors ~t(s)
and ~n(s) determine a moving frame along the curve C and the curve C is determined by how the
instantaneous direction of motion ~t(s) of C changes. It can be shown [1] that instantaneous rate of
change d~t

ds of the unit tangent vector ~t(s) is always perpendicular to ~t(s) and must be a multiple of
the normal vector ~n(s). This allows us to conclude that there exists a scalar function (s) called
the curvature of C such that

d~t

ds
= (s)~n(s)

d~n

ds
= �(s)~t(s).

As the name suggests, the curvature function (s) is a measure of how the curve C curves in the
plane, providing a measure of how the instantaneous direction of motion ~t(s) of the curve C changes
as one moves along C. See Figure 1.1 for a visual of the unit tangent and normal vector as it moves
along a curve as a moving frame.

The highlight of this construction is the following theorem.

Theorem 1.1.1. Given a differentiable function (s), there exists exactly one curve C, determined

up to positioning in the the plane, parametrized by arc length with curvature (s).

It is in this sense that the curvature (s) of a regular curve C parametrized by arc length in the
Euclidean plane determines the curve C. The use of the moving frame outlined above for curves
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Figure 1.1: A visualization of the moving frame along a curve C in the Euclidean plane.

in the Euclidean plane more or less completes the study of the geometry of the Euclidean plane
in the vision of Klein, as invariants of both the geometry and its geometric objects are completely
understood.

1.2 Outline of Thesis

In this thesis we use the moving frame method by developed Peter Olver and Mark Fels [2] to inves-
tigate two and three-dimensional geometries in the spirit of Klein, identifying differential invariants
of curves and surfaces (geometric objects) of the geometries in question.

In [2], Mark Fels and Peter Olver outlined a method of moving frames that can be used to
catalog and classify invariants of geometric objects in a geometric space X that is determined by
a collection of geometric transformations G on X. In comparison to the moving frame method for
curves in the Euclidean plane outlined above, the Fels-Olver moving frame method does not rely
on advance knowledge of the geometric space being investigated and can instead be used as way
to investigate the geometry of the space itself. The Fels-Olver moving frame method can easily
be adapted to investigate invariants of geometric objects of different dimensions that reside in the
same underlying geometric space. For example, in a three-dimensional geometric space, there are
one-dimensional geometric objects (curves) and two-dimensional geometric objects (surfaces) that
can be investigated. The ability to investigate both the curves and surfaces of a geometric space
on the same conceptual and analytic foundation is a significant benefit of the Fels-Olver moving
method in comparison to traditional moving methods [3], [4], [5], [15].

We complete an investigation of three distinct geometries using the Fels-Olver moving method.
In all cases, the point set of the geometric space will be either the ordinary two-dimensional Carte-
sian plane R2 or the ordinary three-dimensional Cartesian space R3. The collection of geometric
transformations acting on the points of the space will determine the geometry under investigation.
We provide a classification of the invariants of curves (in the case of a two-dimensional geometry) or
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a classification of the invariants of curves and surfaces (in the case of a three-dimensional geometry).
The three geometric spaces that we investigate are outlined below.

1. The Lorentz-Minkowski plane. We take as a point set R2 and identify points P in coordinates
as P (x, y). The geometric transformations defining the geometry of the Lorentz-Minkowski
plane are identified with three parameters (a, b, ✓) and transform the points of the plane
according to the transformation laws1

x̄ = x cosh ✓ + y sinh ✓ + a

ȳ = x sinh ✓ + y cosh ✓ + b.

We then use the Fels-Olver moving frame method to find the properties of a generic curve C

that remain unchanged when transformed under the indicated geometric transformations.

2. The Heisenberg Group H
3
R. We take as a point set R3 and identify points P in coordinates

as P (x, y, z). The geometric transformations defining the geometry of H3
R are identified with

four parameters (a, b, c, ✓) and transform the points of the R3 according to the transformation
laws

x̄ = x cos ✓ � y sin ✓ + a

ȳ = x sin ✓ + y cos ✓ + b

z̄ = z + c+
1

2
(a sin ✓ � b cos ✓)x+

1

2
(a cos ✓ + b sin ✓) y.

We then use the Fels-Olver moving frame method to find the properties of generic curves C and
generic surfaces S that remain unchanged when transformed under the indicated geometric
transformations.

3. The Heisenberg Group H
3
L. We take as a point set R3 and identify points P in coordinates

as P (x, y, z). The geometric transformations defining the geometry of H3
R are identified with

four parameters (a, b, c, ✓) and transform the points of the R3 according to the transformation
laws

x̄ = x cosh ✓ + y sinh ✓ + a

ȳ = x sinh ✓ + y cosh ✓ + b

z̄ = z + c+
1

2
(a sinh ✓ � b cosh ✓)x+

1

2
(a cosh ✓ � b sinh ✓) y.

We then use the Fels-Olver moving frame method to find the properties of generic curves C and
generic surfaces S that remain unchanged when transformed under the indicated geometric
transformations.

1Note for the purposes of comparison that the geometry of the Euclidean plane can also be investigated using
the Fels-Olver moving frame method. The transformation laws encoding the Euclidean geometry of rotations and
translations are given by x̄ = x cos ✓ � y sin ✓ + a and ȳ = x sin ✓ + y cos ✓ + b. We will review this in Chapter 3 as a
way to demonstrate the Fels-Olver moving frame method.
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The investigation of all four geometries will follow the Fels-Olver moving frame method and
require that the geometric transformations are prolonged to the jet space of curves/surfaces in the
geometric space under investigation. Extensive use will be made throughout the investigation of the
geometry of both derivatives and partial derivatives, including tangent lines to curves and tangent
planes to surfaces. See [9] and [10] for details.
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Chapter 2

Technical Material

In this chapter we outline the technical material needed to communicate the results and employ the
Fels-Olver moving frame method. For additional details related to groups and group actions one
can consult a standard modern algebra textbook, but we follow [11]. For additional details and a
complete generalization of jet bundles for curves and surfaces, see [8], [9], [10], [11]. For additional
details on the prolongation of a group action to the jet bundle, see any of the textbooks [8], [9], [10],
[11]. An adequate and thorough summary of all of this material in the setting of moving frames can
be found in [2].
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2.1 Groups and Group Actions

The foundation of Klein’s view on geometry rests on groups and group actions on a space. A group
is central to Klein’s view on geometry as it provides a notion of symmetry. Recall the definition of
a group G.

Definition 1 (Group). A group G is defined as a set of elements with a binary operation that

satisfies the properties of closure, associativity, the identity property, and the inverse property.

Remark 2.1.1. We tend to represent the binary operation of a group G using multiplicative notation

g1g2 for g1, g2 2 G. Often our groups G will be groups of matrices and the binary operation is ordinary

matrix multiplication.

Example 2.1.1 (Rotations of R2 ). The set of rotations of the plane that fix the origin is realized

as the set

G =

⇢
R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆ ����✓ 2 R
�
,

and becomes a group with matrix multiplication defining the binary (or group) operation. It can

be explicitly checked that the required properties of a group are satisfied. Intuitively, a rotation

R✓1 followed by a second rotation R✓2 will produce a third rotation R✓3 = R✓1+✓2 ; rotations are

associative; the rotation of by zero degrees will act as the identity; and the inverse of a rotation R✓

will by a rotation R�✓ of equal magnitude but in the opposite direction.

Definition 2 (Group Action). Let G be a group and X a set. A G-action on X is a function

µ : G ⇥X ! X, typically written µ(g, x) = g · x, that satisfies

1. µ(Id, x) = Id · x = x for all x 2 G, and

2. µ (g1, µ (g2, x)) = µ(g1g2, x), or equivalently g1 · (g2 · x) = (g1g2) · x, for all g1, g2 2 G and all

x 2 X.

Remark 2.1.2. A group action of a group G on a set X is a way to realize G as a set of transfor-

mations on the set X.

Remark 2.1.3. For our purposes, we will always begin with a group action on R2
or R3

.

Remark 2.1.4. In much of this work, the group G under consideration will be a group of matrices

and we will have a G-action on either X = R2
or X = R3

defined by matrix multiplication.

Example 2.1.2. Let G =

⇢
R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆ ����✓ 2 R
�

be the group of rotations on the Carte-

sian plane X = R2
and let p =

✓
x
y

◆
be a point in R2

represented as a column vector. Then there is

G-action on R2
defined by matrix multiplication:

R✓

✓
x
y

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
x
y

◆
=

✓
x̄
ȳ

◆
.

From, this, we get that

x̄ = x cos ✓ � y sin ✓

ȳ = x sin ✓ + y cos ✓.
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It is in this way that we think of a G-action as a set of transformations (x, y) 7! g · (x, y) = (x̄, ȳ)
on X.

A group action on a set X can satisfy additional properties, but we focus on one here.

Definition 3 (Transitive). Let G be a group and X be a set. A G-action on X is said to be transitive
if for all x1, x2 2 X, there exists g 2 G such that g · x1 = x2.

Remark 2.1.5. A G-action on X is transitive if any point in X can be brought to any other point

in X by an element of G

We now define a group of geometric transformations on a space X = Rp, p = 2 or p = 3. For
this we will require that our group G be a matrix Lie group. We will not pursue the abstract study
or properties of matrix Lie groups in the thesis and will settle on giving an indication of what we
are requiring for a group of geometric transformations.

Definition 4 (Matrix Lie group). A group G is said to be a matrix Lie group if G can be a realized

as a closed subgroup of GLn (R), the group of n⇥n invertible matrices with entries in R, and whose

elements depend continuously on the parameters.

Definition 5 (Group of Geometric Transformations). A group G is a group of geometric transfor-
mations on X = Rp

, p = 2 or p = 3, if

1. G is a matrix Lie group, and

2. there is a transitive G-action on X such that the components of the action µ : G⇥X ! X are

differentiable of all orders.

Example 2.1.3. Let G =

⇢
R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆ ����✓ 2 R
�

be the group of rotations on the Carte-

sian plane X = R2
. The group G is matrix Lie group but it is not a group of geometric transfor-

mations on X. The G-action on X = R2
is not transitive as a point p =

✓
x
y

◆
can only be rotated

around a circle of a fixed radius r =
p
x2 + y2 by elements of G.

We can now think of a group of geometric transformations on X = R2 or R3 as defining a
geometry on X.

We close the section with the definition of an invariant for a G-action. Informally, an invariant
for a G-action is a quantity that does not change under the action of G.

Definition 6 (Invariant). An invariant for a G-action on a set X is a function f : X ! R such

that f(g · x) = f(x) for all g 2 G and all x 2 X.

Remark 2.1.6. Note that if a G-action on a set X is transitive, then any invariant is a constant

function. If x1 and x2 are elements of X and the G-action is transitive, then there exists g 2 G such

that g · x1 = x2. But if f is an invariant, then f(x1) = f(g · x1) = f(x2) and this must hold for all

x1 and x2 in X.
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2.2 Prolonged Actions and Jet Spaces

We now establish what is needed to find differential invariants of curves and surfaces under a group
of geometric transformations G on R2 or R3. Everything extends to higher dimensional spaces with
the appropriate changes. For full details, see [2], [8], [9], [10], or [11].

To setup the general case, we first consider the case of curves in the Cartesian plane R2. We will
always work locally and assume that a curve C is given by the graph of a function y = y(x). Since
we are working locally, we will ignore issues related to the domain of the function and generally
assume that the domain is all of R. The image of the curve C is the set of points:

C =
n
(x, y(x))

���x 2 R
o
.

The G-action on R2 extends to curves and gives rise to an induced action. If g 2 G, then g
transforms a curve C by

g · C =
n
g · (x, y(x))

���x 2 R
o
= C.

Our primary concern is to find invariants of the curve C, or properties of C that do not change under
the G-action. According to Remark 2.1.6, the only invariants for the action of a group of geometric
transformations on R2 are constant functions, as any point R2 can be brought to any other point
in R2 by an element of G. As a result there can be no meaningful invariants of a curve C based
solely on the points of C. Any meaningful invariant of C must depend on more than the points of
C. To identify meaningful invariants of C, we need to prolong the action of G to the derivatives and
infinitesimal approximations of C.

When g 2 G acts on R2 and transforms a curve C, there is also an induced (geometric) action
on the tangent lines of C. Looking at a point (x, y(x)) on C, the transformation g 2 G will not only
take the point (x, y(x)) to a point (x, y (x)), but it will take the tangent line l to C at (x, y(x))
to the tangent line l of C at the point (x, y(x)). Since a tangent line l is determined by the point
(x, y(x)) and the derivative y0(x), a prolonged action of G on derivatives is defined by requiring that
it satisfy

g · l = l.

The G-action can then be extended to derivatives of any order by requiring it to take nth order
approximating objects of C at (x, y(x)) defined by the Taylor series to nth order approximating
objects of C at ((x, y (x)). See [11] for full details. We outline what is required for curves in R2,
curves in R3, and surfaces in R3 below.

2.2.1 Prolonged G-Actions on Curves in R2

For this section we closely follow [11]. Let G be a group of geometric transformations on R2. We
will denote points in R2 in coordinate form by (x, y) and we will express the G-action on R2 by

g · (x, y) = (x(x, y, g), y(x, y, g)) .

We are suppressing the transformation parameters of G but indicating that the transformed point
(x, y) depends on x, y, and the group transformation g. The transformation laws are then

x = x(x, y, g) (2.1)
y = y(x, y, g). (2.2)
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To find the prolonged action of G on curves in R2 we work locally and consider curves C which can
be described by the graph of a function y = y(x). We use the (n+ 2)-dimensional Cartesian space
J

(n) (R,R) with suggestively named coordinates to collect the n-jets of curves:

J
(n) (R,R) =

n⇣
x, y, y0, y00, . . . , y(n)

⌘o
⇠ Rn+2.

Definition 7 (n-jet). The n-jet of a curve C =
n
(x, y(x))

���x 2 R
o

is the curve

j(n) (C) =
n⇣

x, y(x), y0(x), y00(x), . . . y(n)(x)
⌘ ���x 2 R

o
⇢ J

(n) (R,R) .

Example 2.2.1. Let C be the curve in R2
given by (x, cosx+ x4). The three-jet of C is the curve

j(3) (C) =
n�

x, cosx+ x4,� sinx+ 4x3,� cosx+ 12x2, sinx+ 24x
� ���x 2 R

o
⇢ J

(3) (R,R) .

Remark 2.2.1. Not every curve in J
(n) (R,R) is the n-jet of a curve C in R2

. To be the n-jet

of a curve in R2
, there is a compatibility condition that must be satisfied by the components of the

curve: each component after the second component must be the derivative of the component that

immediately precedes it.

The G-action on R2 prolonged to curves and derivatives of curves is represented by an action of
G on J

(1) (R,R) and follows from the chain rule. We first outline the construction for prolonging
the action of G to J

(1) (R,R). The G-action is prolonged to the higher order jets J
(n) (R,R) by

applying a prolonged differential operator.

We begin by noting that while a curve C starts out as the graph of a function y = y(x), the
transformed curve

g · C = g ·
n
(x, y(x))

���x 2 R
o
= C

does not have to be the graph of a function of x. The transformed curve will (at least locally) be
described by a function where y is a function of the independent variable x: y = y (x). We can then
implicitly differentiate to calculate dy

dx . We have the following definition.

Definition 8. Let G be a group of geometric transformations on R2
. The prolonged action of G to

the one-jets of curves C that are described by the graph of a function y = y(x) is defined by

g ·
dy

dx
=

dy

dx
.

Implicit differentiation of (2.1) and (2.2) gives

dy

dx
=

@y
@x
@x
@x

=

@y
@x + @y

@y
dy
dx

@x
@x + @x

@y
dy
dx

. (2.3)

To simplify notation in the above, we make use of the implicit differentiation operator.

Definition 9 (The Implicit Differentiation Operator). The implicit differentiation operator for

curves in R2
that are described by the graph of a function y = y(x) is

Dx =
@

@x
+ y0

@

@y
+ y00

@

@y0
+ ... (2.4)
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Remark 2.2.2. When applying the implicit differentiation operator we treat all appearances of the

dependent variable y and its derivatives as free variables.

The prolonged transformation of the G-action in (2.3) can then be expressed as

dy

dx
=

Dxy

Dxx
= y0,

where y and x are given by (2.1) and (2.2).

The prolonged action of G to the space of n-jets is then defined inductively by

y(n) = g · y(n) =
1

Dxx
Dx

⇣
y(n�1)

⌘
, for all g 2 G, n � 1.

The differentiation operator Dx = 1
Dxx

Dx is important enough to give it a name.

Definition 10 (Prolonged Transformation Operator). Let G be a group of geometric transformations

on R2
with G-action described by (2.1) and (2.2). The differential operator Dx = 1

Dxx
Dx is called

the prolonged transformation operator for the G-action on R2
to the action of G on J

(n) (R,R) .

2.2.2 Prolonged G-actions on Curves in R3

Let G be a group of geometric transformations acting on R3. The prolonged G-action on curves
in R3 follows directly from the above once one accounts for the fact that additional variables will
now depend on the independent variable. For reference we outline the relevant definitions for the
prolongation of the G-action to curves C in R3. We will assume that we are working with curves C

where both y and z are functions of the independent variable x:

C =
n
(x, y(x), z(x)) 2 R3

���x 2 R
o
.

As before we assume for simplicity that the domain is all of R.
We will denote points in R3 in coordinate form by (x, y, z) and we will express the G-action on

R3 by
g · (x, y, z) = (x(x, y, z, g), y(x, y, z, g), z(x, y, z, g)) .

As before we are suppressing the transformation parameters of G but indicating that the transformed
point (x, y, z) depends on x, y, z and the group transformation g. The transformation laws are then

x = x(x, y, z, g) (2.5)
y = y(x, y, z, g) (2.6)
z = z(x, y, z, g) (2.7)

We introduce the (3+ 2n)-dimensional Cartesian space J
(n)

�
R,R2

�
with suggestively named coor-

dinates for the n-jets of curves C =
n
(x, y(x), z(x))

���x 2 R
o

:

J
(n)

�
R,R2

�
=
n⇣

x, y, z, y0, z0, y00, z00, . . . , y(n), z(n)
⌘o

⇠ R3+2n.
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Definition 11 (n-jet). The n-jet of a curve C =
n
(x, y(x), z(x))

���x 2 R
o
⇢ R3

is the curve

j(n) (C) =
n⇣

x, y(x), z(x), y0(x), z0x, y00(x), z00(x), . . . , . . . y(n)(x), z(n)(x)
⌘ ���x 2 R

o
⇢ J

(n)
�
R,R2

�
.

Definition 12 (The Implicit Differentiation Operator). The implicit differentiation operator for

curves in R3
where y and z are functions of the independent variable is

Dx =
@

@x
+ y0

@

@y
+ z0

@

@z
+ y00

@

@y0
+ z00

@

@z0
...

The prolonged transformation of the G-action to J
(1)

�
R,R2

�
is then defined by

dy

dx
=

Dxy

Dxx
= y0 (2.8)

and
dz

dx
=

Dxz

Dxx
= z0, (2.9)

where y and x are given by (2.5) and (2.6).

As in the case of R2, the prolonged transformation of an element g 2 G on R3 to J
(n)

�
R,R2

�
is

defined inductively by repeated application of the differential operator Dx = 1
Dxx

Dx. Specifically

y(n) = g · y(n) =
1

Dxx
Dxy

(n�1) = Dxy
(n�1) (2.10)

and
z(n) = g · z(n) =

1

Dxx
Dxz

(n�1) = Dxz
(n�1) (2.11)

We summarize this with the following definition

Definition 13 (Prolonged Transformation Operator). Let G be a group of geometric transforma-

tions on R3
with G-action described by (2.5), (2.6), and (2.7). Let Dx be the implicit differentiation

operator as in Definition 12. The differential operator Dx = 1
Dxx

Dx, is called the prolonged trans-
formation operator for the G-action on R3

to the action of G on J
(n)

�
R,R2

�
.

2.2.3 Prolonged G-actions on Surfaces in R3

Like curves, when a group of geometric transformations G acts on R3, there is an induced action
on surfaces S in R3. The idea of the prolonged action of G to surfaces is the same. If S is a surface
in R3, then a transformation of R3 by g 2 G will induce a transformation of S that we prolong
geometrically. For example if g takes S to g · S = S, then g will also take the tangent plane of S to
S. We interpret this as an action of G on first order partial derivatives. We can then prolong the
action higher order derivatives. The main difference is that a surface depends on two independent
variables, not one. To account for the difference, we need an additional prolonged transformation
operator. We will record the relevant definitions following [2] and [11].

We will typically work with surfaces S that can be described as the graph of a function z =
z(x, y):

S =
n
(x, y, z (x, y)) 2 R3

���(x, y) 2 R2
o
.
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For simplicity we will assume that the domain of the function z = z(x, y) is all (x, y) 2 R2. We
will use the notation of (2.5), (2.6), (2.7) to represent the transformation g · (x, y, z) = (x, y, z) of
a point (x, y, z) by g 2 G.

The n-jets of surfaces will be recorded in the Cartesian space with the indicated coordinates

J
(n)

�
R2,R1

�
= {(x, y, z, zx, zy, zxx, zxy, zyy, . . . , zK)} ,

where N ranges over all partial derivative strings of order less or equal to n. N then represents
symmetric (mixed-partial derivatives commute) strings of xs and ys of length less than or equal n
. We will order our partial derivatives of given degree using the dictionary order.

Definition 14 (n-jet). The n-jet of a surface S =
n
(x, y, z (z, y))

��� (x, y) 2 R2
o
⇢ R3

is the surface

j(n) (S) =
n
(x, y, z(x, y), zx(x, y), zy(x, y), zxx(x, y), zxy(x, y), zyy(x, y), . . . , zK(x, y))

���(x, y) 2 R2
o
.

The n-jet j(n) (S) is a subset of J
(n)

�
R2,R1

�
.

Example 2.2.2. Let S =
��

x, y, xy2 + y cosx
� 

. The two-jet of S is

j(2) (S) =
n�

x, y, xy2 + y cosx, y2 � y sinx, 2xy + cosx,�y cosx, 2y � sinx, 2x
� ��� (x, y) 2 R2

o
.

As with our discussion of curves in R2, if a surface S is the graph of a function z = z(x, y),
then a transformed surface S = g · S does not have to continue to be the graph of a function of the
independent variables x and y. The surface S will be the graph of a function z = z (x, y), where x
and y the independent variables. Determining the prolonged transformations of zx and zy requires
the use of implicit differentiation operators.

Definition 15 (The Implicit Differentiation Operators). The implicit differentiation operators for

surfaces in R3
where z = z(x, y) is a function of the independent variables x and y are

Dx =
@

@x
+ zx

@

@z
+ zxx

@

@zx
+ zxy

@

@zy
+ zxxx

@

@zxx
+ zxxy

@

@zxy
...

and

Dy =
@

@y
+ zy

@

@z
+ zxy

@

@zx
+ zyy

@

@zy
+ zxxy

@

@zxx
+ zxyy

@

@zxy
...

The prolonged action of G to surfaces in R3 that are described as the graph of a function
z = z(x, y) (or the prolonged action of G to J

(n)
�
R2,R1

�
) is given by repeated application of

prolonged transformation operators. We take the following as a definition. See [2], [8], or [10] for
complete details and justification.

Definition 16 (Prolonged Transformation Operators). Let G be a group of geometric transfor-

mations on R3
with G-action described by (2.5), (2.6), and (2.7). Let Dx and Dy be the implicit

differentiations operators as in Definition 15. Let

J =

0

@
Dxx Dyx

Dxy Dyy

1

A .
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The differential operators Dx and Dy defined by

0

@
Dx

Dy

1

A = J�T

0

@
Dx

Dy

1

A =
1

det J

0

@
Dyy �Dxy

�Dyx Dxx

1

A

0

@
Dx

Dy

1

A

are called the prolonged transformation operators for the G-action on R3
to the action of G on

J
(n)

�
R2,R1

�
.

Carrying out the matrix multiplication in the above definition, the prolonged transformation
operators are expressed as

Dx =
1

DxxDyy �DyxDxy
(Dyy Dx �Dxy Dy) (2.12)

and
Dy =

1

DxxDyy �DyxDxy
(�DyxDx +DxxDy) (2.13)

The formula for the prolonged action of G to J
(1)

�
R2,R

�
are

zx = g · zx = Dxz and zy = g · zy = Dyz.

The formula for the higher order prolongations of G to J
(n)

�
R2,R

�
are defined inductively by

zK,x = Dx (zK) and zK,y = Dy (zK) ,

where K is a partial derivative subscript string of degree n� 1, n � 1.

17



2.3 Fels-Olver Method of Moving Frames

In [2] , Mark Fels and Peter Olver outlined a method of moving frames that can be used to catalog
and classify invariants of geometric objects in a geometric space X that is determined by a collection
of geometric transformations G on X. In comparison to the moving frame method outlined above
for curves in the Euclidean plane, the Fels-Olver moving frame method does not rely on advance
knowledge of the geometric space being investigated and can instead be used as way to investigate
the geometry of the space itself.

Further, the Fels-Olver moving frame method can be easily adapted to investigate invariants of
geometric objects of different dimensions that reside in the same underlying geometric space.

For example, in a three-dimensional geometric space, there are one-dimensional geometric ob-
jects (curves) and two-dimensional geometric objects (surfaces) that can be investigated.

The ability to investigate both the curves and surfaces of a geometric space on the same concep-
tual and analytic foundation is a significant benefit of the Fels-Olver moving method in comparison
to traditional moving methods [3], [4], [5], [15].

2.3.1 Moving Frame Maps

We now outline the relevant definitions and the algorithm for the construction of a Fels-Olver moving
frame.

Notation 2.3.1. For a group G acting on a set X, we will denote the action of an element g 2 G

on x 2 X by g · x 2 X. The group operation of G will be denoted by ordinary multiplication.

Definition 17 (Moving Frame Map). A moving frame map for the action of a group G on a set X
is a map ⇢ : X ! G that satisfies

⇢(g · x) = ⇢(x)g�1
8x 2 X, g 2 G.

Remark 2.3.1. The definition of the moving frame map indicates that if x1, x2 2 X and there

exists g 2 G such that g · x1 = x2, then ⇢(x1) · x1 = ⇢(x2) · x2. Observe that

⇢ (x2) · x2 = ⇢ (g · x1) · (g · x1)

= ⇢ (x1) g
�1

· (g · x1)

= ⇢ (x1)
�
g�1g

�
· x1

= ⇢ (x1) · x1

Our focus is on moving frames for curves in R2 and curves and surfaces in R3 under the action
of a group of geometric transformations. We make the following definitions for our purposes. The
definitions are adopted from [2].

Definition 18 (Moving Frame Map for Curves). Let G be a group of geometric transformations on

X, where X = R2
or X = R3

. Let J
(n) (C, X) be the space of n-jets of curves in X. A moving

frame map for curves under the action of G on X is a map ⇢ : J (n) (C, X) ! G that satisfies

⇢
⇣
g · z(n)

⌘
= ⇢

⇣
z(n)

⌘
g�1

8g 2 G, z(n) 2 Domain (⇢) ⇢ J
(n) (C, X) ,

for the prolonged G-action on curves. Restricted to the n-jet of a curve C, the map ⇢ : j(n) (C) ! G

is a moving frame map for the curve C.
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Definition 19 (Moving Frame Map for Surfaces). Let G be a group of geometric transformations

on R3
. Let J

(n)
�
S,R3

�
be the space of n-jets of surfaces in R3

. A moving frame map for surfaces
for the G-action on R3

is a map ⇢ : J (n)
�
S,R3

�
! G that satisfies

⇢
⇣
g · z(n)

⌘
= ⇢

⇣
z(n)

⌘
g�1

8g 2 G, z(n) 2 Domain (⇢) ⇢ J
(n) (S, X)

for the prolonged G-action on surfaces. Restricted to n-jet of a surface S, the map ⇢ : j(n) (S) ! G

is a moving frame map for the surface S.

Remark 2.3.2. At times a moving frame map for curves or surfaces might only be defined for a

subset of curves or surfaces, not for all curves or surfaces. A curve or surface that lies outside of

the domain of a moving frame map can usually be characterized in another way.

2.3.2 Cross-Sections, Normalization, Construction of Moving Frame Maps

For this section we will assume that G is a group of geometric transformations on R2 or R3. We
will let X represent any of the following:

• The space of n-jets of curves in R2: J
(n)

�
C,R2

�

• The space of n-jets of curves in R3: J
(n)

�
C,R3

�

• The space of n-jets of surfaces in R3: J
(n)

�
S,R3

�

We will also use z(n) to represent points in X. We typically define a moving frame ⇢ for the prolonged
action of G to X by specifying a cross-section.

Definition 20 (Cross-section). A subspace K
(n)

⇢ X is said to be a local cross-section to the

prolonged G-action on X if for each z(n) 2 X the set of g 2 G such that g · z 2 K
(n)

is discrete or

empty.

Remark 2.3.3. We use a very weak definition of a cross-section here, but it is suitable for our

purposes. Fels and Olver use a more technical definition for theoretical purposes. Their condition

is meant to ensure that one has (suitable) theoretical control of solving the equation defined by

g · z(n) 2 K
(n)

for the group element g 2 G.

Note that it is possible that there exist z(n) 2 X such that there does not exist any g 2 G

satisfying g · z(n) 2 K
(n). With a cross-section K

(n) for the prolonged action of G on X, we then
implicitly define a moving frame map ⇢ : X ! G by

⇢
⇣
z(n)

⌘
· z(n) 2 K

(n). (2.14)

In specific examples that we investigate, we are able to recover the moving frame map explicitly.
Despite the possible issues in attempting to solve the equations defined by ⇢

�
z(n)

�
· z(n) 2 K

(n), we
take the point of view advocated for (under the appropriate hypotheses) by Fels and Olver in [2]:

Cross-sections $ Moving frame maps ⇢ for the G-action.
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We will now outline the process for how to turn a (suitable) cross-section into a moving frame
map. To do so, we will work abstractly in three-dimensions with curves. We will find all of our
moving frame maps on J

(1)
�
C,R3

�
, so we will illustrate the process in that setting.

Let G be a group of geometric transformations on R3 and prolong the action to J
(1)

�
C,R3

�
.

Assuming that we are working with curves C where y = y(x) and z = z(x) are functions of the
independent variable x, then we have

J
(1)

�
R,R2

�
=
��

x, y, z, y0, z0
� 

.

Let the prolonged G-action of g 2 G on a (x, y, z, y0, z0) be given by

g ·
�
x, y, z, y0, z0

�
=
�
x̄, ȳ, z̄, ȳ0, z̄0

�

and represented as

x̄ = x̄ (x, y, z, g)

ȳ = ȳ (x, y, z, g)

z̄ = z̄ (x, y, z, g)

ȳ0 = ȳ0
�
x, y, z, y0, z0, g

�

z̄0 = ȳ0
�
x, y, z, y0, z0, g

�
.

Note that as before we are using g 2 G to represent a group element that could depend on several
parameters. We will define a cross-section K

(1)
⇢ J

(1)
�
R,R2

�
by setting some set of the coordinates

equal to constants, say

x = k1, y = k2, z = k3, y0 = k4.

We then take a generic point (x, y, z, y0, z0) 2 J
(1)

�
R,R2

�
and attempt to find g 2 G such that

g · (x, y, z, y0, z0) =
�
x̄, ȳ, z̄, ȳ0, z̄0

�
2 K

(1).

This gives a set of normalization equations

x̄ = x̄ (x, y, z, g) = k1 (2.15)
ȳ = ȳ (x, y, z, g) = k2 (2.16)
z̄ = z̄ (x, y, z, g) = k3 (2.17)
ȳ0 = ȳ0

�
x, y, z, y0, z0, g

�
= k4 (2.18)

to be solved for the required element g 2 G. Provided that one can solve the normalization equations
for g with some reasonable control over the solutions, the resulting map ⇢ : J (1)

�
R,R2

�
! G defined

by
⇢
�
x, y, z, y0, z0

�
| {z }

2G

·
�
x, y, z, y0, z0

�
| {z }

2J (1)(R,R2)

2 K
(1)

will be a well-defined moving frame map.

Remark 2.3.4. To be able to solve the normalization equations for g 2 G, one needs at least as

many equations as parameters of the group G.
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2.3.3 The Invariantization Process

We continue assuming G is a group of geometric transformations on R2 or R3 and that X can
represent any of the following:

• The space of n-jets of curves in R2: J
(n)

�
C,R2

�

• The space of n-jets of curves in R3: J
(n)

�
C,R3

�

• The space of n-jets of surfaces in R3: J
(n)

�
S,R3

�

We now outline how a moving frame map ⇢ : X ! G for the prolonged G-action on X can be used
to construct invariants of curves/surfaces. The ability to easily construct invariants for curves and
surfaces is the benefit of the Fels-Olver moving frame method.

Definition 21 (Differential Invariant). A differential invariant for the prolonged action of G on X
is a function F : X ! R such that

F
⇣
g · z(n)

⌘
= F

⇣
z(n)

⌘
8g 2 G, z(n) 2 X.

Restricted to the n-jet of a curve C, the function F
�
j(n) (C)

�
is a differential invariant of the curve

C.

Definition 22 (Invariantization). Let ⇢ : X ! G be a moving frame map for the prolonged action

of G on X and let F : X ! R be a differential function. The invariantization of F by the moving

frame map ⇢ is the function i (F ) : X ! R defined by

i (F )
⇣
z(n)

⌘
:= F

⇣
⇢
⇣
z(n)

⌘
· z(n)

⌘
.

The following theorem justifies the definition of invariantization.

Theorem 2.3.1. Let ⇢ : X ! G be a moving frame map for the prolonged action of G on X and

let F : X ! R be a differential function. The invariantization of F by the moving frame map ⇢ is

a differential invariant for the prolonged action of G on X.

Proof. The proof follows from the defining property of a moving frame and Remark 2.3.1. For g 2 G

and z(n) 2 X we have

i (F )
⇣
g · z(n)

⌘
:= F

⇣
⇢
⇣
g · z(n)

⌘
·

⇣
g · z(n)

⌘⌘

= F
⇣
⇢
⇣
z(n)

⌘
g�1

·

⇣
g · z(n)

⌘⌘

= F
⇣
⇢
⇣
z(n)

⌘
· z(n)

⌘

= i (F )
⇣
z(n)

⌘
.

21



Chapter 3

Curves in the Euclidean Plane

We begin by demonstrating how to use the Fels-Olver moving frame method by applying it to
the Euclidean plane. Analysis of curves in the Euclidean plane using the Fels-Olver moving frame
method has already been carried out in many different places and is the common example used to
illustrate the method. See [2], [8], [11].

The point-set of the Euclidean plane is ordinary R2 and the geometry of the Euclidean plane
is determined by the transformations generated by rotations and translations. We will consider
curves C that can be described as the graph of a function y = y(x). With sufficient assumptions
on differentiability, this allows all curves except for vertical lines to be analyzed on open sets away
from isolated singularities where dy

dx is undefined on account of the tangent line being vertical. At
such points, one could change their viewpoint and instead view the curve C locally as a graph where
x is a function of y.

3.1 Geometric Transformations

The geometric transformations of the Euclidean plane are the familiar rotations and translations. We
will represent the geometric transformations of Euclidean geometry as a matrix group and the action
of the transformations will be given by matrix multiplication. To allow for this, we will identify
points p = (x, y) in the Euclidean plane with a point �!p = (x, y, 1) in three-dimensional space.
Note that this identifies the Euclidean plane with the plane z = 1 in standard three-dimensional
Cartesian space.

A Euclidean transformation of the plane is comprised of a rotation R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
and

a translation vector ~v = (a, b). Note that the rotation matrix R✓ is a rotation about the origin and
the first column of the matrix is a point on the unit circle representing the rotation of the vector
~e1 = (1, 0), while the second column in the matrix is a ⇡/2 rotation of the vector (cos ✓, sin ✓).
The second column of the rotation matrix thus represents a corresponding rotation of the vector
~e2 = (0, 1).

The group of Euclidean transformations on the plane can then be represented as a matrix Lie
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group as a

G
�
E2
�
=

8
<

:

0

@
cos ✓ � sin ✓ a
sin ✓ cos ✓ b
0 0 1

1

A
���✓, a, b 2 R

9
=

; . (3.1)

The transformation laws for the action of a matrix M in G
�
E2
�

on a point (x, y) are then given
by matrix multiplication. Let (x, y) = M · (x, y) denote the transformation of a point (x, y) in the
plane by a matrix M in G

�
E2
�
. With the point (x, y) identified as ~p = (x, y, 1) and �!p t denoting

the transpose of ~p, then the transformed point (x, y) is defined by

M�!p t = M

0

@
x
y
1

1

A =

0

@
x
y
1

1

A . (3.2)

Substituting M =

0

@
cos ✓ � sin ✓ a
sin ✓ cos ✓ b
0 0 1

1

A into the above gives

0

@
cos ✓ � sin ✓ a
sin ✓ cos ✓ b
0 0 1

1

A

0

@
x
y
1

1

A =

0

@
x cos ✓ � y sin ✓ + a
x sin ✓ + y cos ✓ + b

1

1

A =

0

@
x
y
1

1

A . (3.3)

In total, for a given geometric transformation M using the parameters (a, b, ✓), the coordinates
of the transformed point (x, y) = M · (x, y) are

x̄ = x cos ✓ � y sin ✓ + a (3.4)
ȳ = x sin ✓ + y cos ✓ + b. (3.5)

Determining the effect of a transformation M on a curve C that is described by the graph of a
function y = y(x) follows by restricting the points (x, y) in the plane to points of the form (x, y(x)).
That is, if C =

n
(x, y(x))

���x 2 R
o

, then M · C consists of all points of the form

(x, y) = (x cos ✓ � y(x) sin ✓ + a, x sin ✓ + y(x) cos ✓ + b) . (3.6)

Note that if C is the graph of a function y = y(x), then the curve M · C need not be the graph of a
function of x as a transformation could rotate the curve C so that it can no longer be described as
a graph of the independent variable x.

3.2 Prolonged Transformations

Viewing the curve C described by the function y = y(x) as a geometric object, the transformations in
G
�
E2
�

induce prolonged transformations on the derivatives of the function y. Geometrically this is
equivalent to transformations of the infinitesimal approximations from the Taylor series expansion.
For example, a transformation M in G

�
E2
�

will take the tangent line of C at the point (x, y(x))

to the tangent line of M · C at the point (x, y(x)), the approximating quadratic function of C at
the point (x, y(x)) to the approximating quadratic of the transformed curve of M · C at the point
(x, y(x)), and so on and so forth for higher order approximations.

23



Following Definition 13 the prolonged transformations on derivatives can be found by applying
the prolonged transformation operator to the above transformation laws. Applying the implicit
differentiation operator (2.4) to (3.4) gives

Dxx̄ = Dx (x cos ✓ � y sin ✓ + a) = cos ✓ � y0 sin ✓.

The prolonged transformation operator for the group action is then

Dx =
Dx

Dxx̄
=

1

cos ✓ � y0 sin ✓
Dx.

Applying the prolonged transformation operator Dx to the transformed coordinates of a curve
C described by the graph of a function as in (3.6) we find the transformed first derivative to be

ȳ0 = Dxȳ =
sin ✓ + y0 cos ✓

cos ✓ � y0 sin ✓
.

Note that applied to ȳ, Dxȳ = Dxy
Dxx

= dy
dx gives the derivative of the transformed curve where the

transformed variable y is viewed as a function of the transformed variable x.
The prolonged transformation of derivatives of higher order are defined inductively. Namely,

ȳ(n) = Dx(ȳ
(n�1)), (3.7)

where ȳ(n�1) is the transformed (n� 1)th derivative. Up to the third order, we have the prolonged
derivatives of curves in the Euclidean plane listed out below:

ȳ0 = Dxȳ =
sin ✓ + y0 cos ✓

cos ✓ � y0 sin ✓
(3.8)

ȳ00 = Dxȳ
0 =

y00

(cos ✓ � y0 sin ✓)3
(3.9)

ȳ(3) = Dxȳ
00 =

3 sin ✓ (y00)2 + (cos ✓ � y0 sin ✓)y(3)

(cos ✓ � y0 sin ✓)5
(3.10)

Continuing to apply the prolonged transformation operator Dx to higher order derivatives gives
the prolonged transformation rules for the action of G

�
E2
�

on J
(n) (R,R), the space of n-jets of

order n.

3.3 Normalization and The Moving Frame

With prolonged transformation rules for G
�
E2
�

on J
(n) (R,R) at hand, a moving frame map can

then be constructed by using a cross section K
(1)

⇢ J
(1)(R,R). We elect to use the cross-section

that corresponds to the traditional moving frame method for curves in the Euclidean plane and will
produce the traditional representation of invariants of curves. See [13] for comparison.

Let C be a curve described the graph of a function (x, y(x)) with one-jet (x, y(x), y0(x)) =
(x, y, y0). At an arbitrary point point (x, y, y0) along the curve C, we will put the curve in normalized
position by solving for the transformation M in G

�
E2
�

that will bring the point (x, y, y0) to the point

24



(0, 0, 0). That is, we look for the transformation M in G
�
E2
�

such that M · (x, y, y0) = (x, y, y0) =
(0, 0, 0). Combined with (3.6) and (3.8), this results in the normalization equations.

x = x cos ✓ � y(x) sin ✓ + a = 0 (3.11)
y = x sin ✓ + y(x) cos ✓ + b = 0 (3.12)

y0 =
sin ✓ + y0 cos ✓

cos ✓ � y0 sin ✓
= 0. (3.13)

The corresponding cross section is thus K
(1) =

n
(x, y, y0) 2 J

(1)
���x = y = y0 = 0

o
. Note that the

normalization equations amount to bringing a point (x, y) on a curve C to the origin and then
rotating the curve until the tangent line is horizontal.

Solving (3.11), (3.12), (3.13) for the variables a, b, and ✓ yields

a = �(x cos ✓ � y sin ✓) (3.14)
b = �(x sin ✓ + y cos ✓) (3.15)
✓ = tan�1

�
�y0

�
(3.16)

Note that with ✓ = tan�1 (�y0), we can use properties of trig functions to find simplified ex-
pressions of cos ✓ and sin ✓. Specifically, we have

cos ✓ =
1q

1 + (y0)2
and sin ✓ = �

y0q
1 + (y0)2

. (3.17)

It then follows that

a = �
x+ yy0q
1 + (y0)2

(3.18)

b = �
xy0 � yq
1 + (y0)2

(3.19)

✓ = tan�1
�
�y0

�
(3.20)

Having the transformation parameters a, b, and ✓ defined in terms of the components of an
arbitrary point (x, y, y0) of the one-jet of C defines the moving frame map ⇢ : j(1) (C) ! G

�
E2
�
, with

⇢(x, y, y0) =

0

BB@

1p
1+(y0)2

y0
p

1+(y0)2
�

x+yy0
p

1+(y0)2

�
y0

p
1+(y0)2

1p
1+(y0)2

xy0�y
p

1+(y0)2

0 0 1

1

CCA = M 2 G
�
E2
�
. (3.21)

3.4 Invariantization

With solutions to the normalization equations (3.11), (3.12), (3.13) and the moving frame map (3.21)
we can now substitute the expressions for a, b, and ✓ in terms of x, y, and y0 into the prolonged
transformations of the higher order derivatives to obtain differential invariants of any desired order.
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We will denote the invariants obtained by making the indicated substitutions into (3.7) by i(y(n)).
Below, we indicate the differential invariants of order two and three obtained by making the indicated
substitutions into (3.9) and (3.10). It is more convenient to substitute the expressions for cos ✓ and
sin ✓ from (3.17), than to substitute the expression for ✓.

i(y00) =
y00

(1 + (y0)2)
3
2

i(y(3)) =
�3y0 (y00)2 + y(3) + (y0)2 y(3)

(1 + (y0)2)3

Remark 3.4.1. Note that the invariant i(y00) =
y00

(1 + (y0)2)
3
2

gives the familiar expression for the

curvature of a curve in the plane that is (can be) calculated in a standard calculus course.

Remark 3.4.2. Note that as one might expect based on geometric intuition and familiarity with

calculus, the transformation parameters corresponding to translation in the Euclidean plane (i.e., a
and b) do not show up in the prolonged transformations of the derivatives of curves.
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Chapter 4

Curves in the Lorentz-Minkowski Plane

We now turn our attention to the geometry of the Lorentz-Minkowski plane and apply the Fels-
Olver moving frame method to catalog the differential invariants of curves in the indicated geom-
etry. Traditional moving frame methods have been carried out in the Lorentz-Minkowski plane
and Lorentz-Minkowski three-space. They often make homework problems in advanced differential
geometry classes. See [6] and [7]. To the best of our knowledge, the application of the Fels-Olver
moving frame method to identify differential invariants of curves in the Lorentz-Minkowski plane is
new.

The point-set for the Lorentz-Minkowski plane is the two-dimensional Cartesian plane. The
feature that distinguishes the Lorentz-Minkowski plane from the Euclidean plane is the collection of
geometric transformations. As before, we consider curves C that can be described as the graph of a
function y = y(x). As with potential isolated singularities when the derivative y0 = dy

dx , our analysis

will also reveal a singularity in the construction of the moving frame map when
����
dy

dx

���� = 1. Curves

in the Lorentz-Minkowski plane where dy
dx is constant of ±1 are well-understood: they correspond

to null lines in the geometry of general relativity and separate spacelike curves from timelike curves
[12].

4.1 Geometric Transformations

We will denote the Lorentz-Minkowski plane by L2 and we will follow closely with the identifications
used in the analysis of curves in the Euclidean plane. The distinguishing feature between L2 and
E2 are the geometric transformations. The geometric transformations defining L2 consist of three
parameters a, b, and ✓. The action of the transformations on the plane can be realized by matrix
multiplication.

As before we will identify individual points p = (x, y) in the plane with the point �!p = (x, y, 1)
in three-dimensional space. This identifies the Lorentz-Minkowski plane with the plane z = 1 in
standard three-dimensional Cartesian space.

A geometric transformation of the Lorentz-Minkowski plane is comprised of a hyperbolic rotation

R✓ =

✓
cosh ✓ sinh ✓
sinh ✓ cosh ✓

◆
and a translation vector ~v = (a, b). Note that the hyperbolic rotation

matrix R✓ is a hyperbolic rotation about the origin. The first column of the matrix is a point on
the hyperbola x2 � y2 = 1 with x > 0 and represents the image of the vector ~e1 = (1, 0) under
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the indicated rotation, while the second column in the matrix is the image of the vector ~e2 = (0, 1)
under the same rotation. Note that the image of ~e2 = (0, 1) under the hyperbolic rotation will like
on the hyperbola y2 � x2 = 1.

The group of geometric transformations on the Lorentz-Minkowski plane1 can then be repre-
sented as a matrix group by

G
�
L2
�
=

8
<

:

0

@
cosh ✓ sinh ✓ a
sinh ✓ cosh ✓ b
0 0 1

1

A
���a, b, ✓ 2 R

9
=

; . (4.1)

The transformation laws for the action of a matrix M in G
�
L2
�

on a point (x, y) are then given
by matrix multiplication. Let M · (x, y) = (x, y) denote the transformation of a point (x, y) in the
plane by a matrix M in G

�
L2
�
. With the point (x, y) identified as ~p = (x, y, 1) and �!p t denoting

the transpose of ~p, then the transformed point (x, y) is defined by

M�!p t = M

0

@
x
y
1

1

A =

0

@
x
y
1

1

A . (4.2)

Substituting M =

0

@
cosh ✓ sinh ✓ a
sinh ✓ cosh ✓ b
0 0 1

1

A into the above gives

0

@
cosh ✓ sinh ✓ a
sinh ✓ cosh ✓ b
0 0 1

1

A

0

@
x
y
1

1

A =

0

@
x cosh ✓ + y sinh ✓ + a
x sinh ✓ + y cosh ✓ + b

1

1

A =

0

@
x
y
1

1

A . (4.3)

This results in the following transformation laws for a point (x, y) transformed to a point (x, y)
by the parameters (a, b, ✓):

x̄ = x cosh ✓ + y sinh ✓ + a (4.4)
ȳ = x sinh ✓ + y cosh ✓ + b. (4.5)

In an identical manner to the analysis of curves in the Euclidean plane, we study the effect of a
transformation M 2 G

�
L2
�

on a curve C given by the graph of a function y = y(x) by substituting
y = y(x) into (4.4) and (4.5).

4.2 Prolonged Transformations

Following Section 2.2.1, we now calculate the prolongation of the transformations in G
�
L2
�

to the
derivatives of the function y = y(x) describing a curve C. In an identical manner to the analysis
carried out on the Euclidean plane, this is geometrically equivalent to the transformations of the
infinitesimal approximations from the Taylor series expansion. The main difference is that we are

1Similar to Euclidean geometry, there is the option to include reflections in the collection of geometric transforma-
tions. For simplicity of exposition, we elect to work with hyperbolic rotations and translations. This ignores potential
issues with orientations, but such issues can be resolved.
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not as accustomed to the transformations in G
�
L2
�

as we are accustomed to the traditional rotations
and translations of Euclidean geometry.

Applying the implicit differentiation operator (2.4) to (4.4) we have that the prolonged trans-
formation operator Dx is given by

Dx =
Dx

Dxx̄
=

1

cosh ✓ + y0 sinh ✓
Dx, (4.6)

where
Dx =

@

@x
+ y0

@

@y
+ y00

@

@y0
+ . . .

is the implicit differentiation operator and

Dxx̄ = Dx (x cosh ✓ + y sinh ✓ + a) = cosh ✓ + y0 sinh ✓.

Remark 4.2.1. In the same manner as Euclidean geometry, Dxȳ = Dxy
Dxx

= dy
dx gives the derivative

of the transformed curve where the transformed variable y is viewed as a transformation of the

transformed variable x. The connection to the geometry in consideration stems from the fact that

Dx depends on the transformations defining the geometry.

Applying the prolonged transformation operator (4.6) to ȳ from (4.5) we obtain

ȳ0 =
sinh ✓ + y0 cosh ✓

cosh ✓ + y0 sinh ✓
. (4.7)

The transformation of any higher order derivative can be calculated by repeated application of Dx

(4.6). The transformations of the second and third order derivatives are recorded below.

ȳ00 =
y00

(cosh ✓ + y0 sinh ✓)3
(4.8)

ȳ(3) =
�3y002 sinh ✓ + (cosh ✓ + y0 sinh ✓)y(3)

(cosh ✓ + y0 sinh ✓)5
(4.9)

The fundamental differential invariant of curves in L2 will come from invariantizing (4.8). This
invariant will correspond to the curvature of a curve in the Lorentz-Minkowski plane.

The construction of the moving frame map is split up into two separate cases depending on
whether |y0| < 1 or |y0| > 1.

Remark 4.2.2. In the following sections, we will be covering how the invariants change depending

on the value of |y0|. There are null lines in the Lorentz-Minkowski plane at y = ±x + c, where c
is any constant. Singularities with the moving frame along a curve C will develop where y0 = ±1.
Thus, for curves where y0 = ±1, their slope is considered an invariant condition, in that performing

any geometric transformations on these curves will not change the value of y0. We will develop two

moving frames as a result. One moving frame when |y0| < 1 and another when |y0| > 1. Curves are

then analyzed on open intervals depending on the magnitude of |y|.
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4.3 Normalization and The Moving Frame

4.3.1 |y0| < 1

In this section we assume that C is described by the graph of a function y = y(x) that satisfies
|y0(x)| < 1 for all x in the domain. We construct our moving frame map by using the cross-section
K

(1)
⇢ J

(1)(R,R) defined by the equations

x = 0, y = 0, and y0 = 0.

Working along a curve C described by the graph (x, y(x)) with one-jet (x, y(x), y0(x)) = (x, y, y0)
we aim to determine the transformation M (depending on x) in G

�
L2
�

that will bring the one-jet
to the point (0, 0, 0). That is, we look for the transformation M in G

�
L2
�

such that M · (x, y, y0) =
(x, y, y0) = (0, 0, 0). See Figure 4.1. The corresponding normalization equations are

x̄ =x cosh ✓ + y sinh ✓ + a = 0 (4.10)
ȳ =x sinh ✓ + y cosh ✓ + b = 0 (4.11)

ȳ0 =
sinh ✓ + y0 cosh ✓

cosh ✓ + y0 sinh ✓
= 0. (4.12)

Figure 4.1: The normalization of a point (x, y, y0(x)) on a curve with |y0(x)| < 1 in the construction
of the moving frame map. The curve is translated to the origin and then a hyperbolic rotation is
applied to make the tangent line horizontal.

Solving for the variables a, b, and ✓ in a similar fashion as with the Euclidean curves, we find
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that

a =� x cosh ✓ � y sinh ✓ (4.13)
b =� x sinh ✓ � y cosh ✓ (4.14)
✓ =tanh�1(�y0) (4.15)

Remark 4.3.1. Solving for ✓ stems from the observation that if |y0| < 1, then |ȳ0| < 1. We can

set the prolonged transformation of the derivative ȳ0 = sinh ✓+y0 cosh ✓
cosh ✓+y0 sinh ✓ equal to some constant �, then

solve for ✓. The equation then becomes

sinh ✓ + y0 cosh ✓ � � cosh ✓ � y0� sinh ✓ = 0.

Using the definitions of sinh ✓ and cosh ✓ in terms of exponential function, this results in

(1� y0�)(e✓ � e�✓)� (y0 � �)(e✓ + e�✓) = 0

e2✓(1 + y0 � �� y0�)� ((1� y0)(1 + �)) = 0

e2✓ =
(1� y0)(1 + �)

(1 + y0)(1� �)

✓ =
1

2
ln

✓
(1� y0)(1 + �)

(1 + y0)(1� �)

◆
.

This equation for ✓ is now dependent on whatever constant � is chosen when resolving ȳ = �.

In order for this equation to hold, the argument of the natural log must be positive. As y0 is assumed

to be �1 < y0 < 1, both factors contained in the argument are positive numbers. The only way for

this to remain true is if � remains in the same bounds as y0. As a result, when |y0| < 1, we can only

use a � such that |�| < 1 as well. For similar reasons, if |y0| > 1, then |�| > 1 as well.

As in the Euclidean case, standard properties of hyperbolic trig functions allow us to find reduced
expressions for cosh ✓ and sinh ✓ when ✓ = tanh�1 (�y0). By substituting the value of ✓ into the
hyperbolic trig functions, we find that

cosh ✓ =
1p

1� (y0)2

sinh ✓ = �
y0p

1� (y0)2
.

The parameters a and b are subsequently reduced down to

a =
yy0 � xp
1� (y0)2

and b =
xy0 � yp
1� (y0)2

.

It follows that solving the normalization equations for the parameters a, b, and ✓ yields

a =
yy0 � xp
1� (y0)2

b =
xy0 � yp
1� (y0)2

✓ = tanh�1
�
�y0

�
.
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Having the transformation parameters a, b, and ✓ defined in terms of the components of an
arbitrary point (x, y, y0) of the one-jet of C defines the moving frame map ⇢ : j(1) (C) ! G

�
L2
�
, with

⇢(x, y, y0) =

0

BB@

1p
1�(y0)2

�y0
p

1�(y0)2
yy0�x

p
1�(y0)2

�y0
p

1�(y0)2
1p

1�(y0)2
xy0�y

p
1�(y0)2

0 0 1

1

CCA = M 2 G
�
L2
�
. (4.16)

4.3.2 |y0| > 1

We now consider the case where the function y = y(x) defining the curve satisfies |y0(x)| > 1 for x
in the domain. We construct our moving frame map by using the cross-section K

(1)
⇢ J

(1)(R,R)
determined by

x = 0, y = 0, and y0 = 2.

We look for a transformation M (depending on x) in G
�
L2
�

that will bring the one-jet to the point
(0, 0, 2). That is, we want to find a transformation M in G

�
L2
�

such that M ·(x, y, y0) = (x, y, y0) =
(0, 0, 2). See Figure 4.2.

Figure 4.2: The normalization of a point (x, y, y0(x)) on a curve with |y0(x)| > 1 in the construction
of the moving frame map. The curve is translated to the origin and then a hyperbolic rotation is
applied so that the tangent line has a slope of 2.

The corresponding normalization equations are

x̄ =x cosh ✓ + y sinh ✓ + a = 0 (4.17)
ȳ =x sinh ✓ + y cosh ✓ + b = 0 (4.18)

ȳ0 =
sinh ✓ + y0 cosh ✓

cosh ✓ + y0 sinh ✓
= 2. (4.19)
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Solving for the variables a, b, and ✓ in a similar fashion as with the Euclidean curves, we find
that

a =� x cosh ✓ � y sinh ✓ (4.20)
b =� x sinh ✓ � y cosh ✓ (4.21)

✓ =tanh�1

✓
2� y0

1� 2y0

◆
. (4.22)

Again, properties of hyperbolic trig functions allow us to find reduced expressions for cosh ✓ and
sinh ✓ when ✓ = tanh�1

⇣
2�y0

1�2y0

⌘
. By substituting the value of ✓ into the hyperbolic trig functions,

we find that

cosh ✓ =
�1 + 2y0

p
3
p
�1 + (y0)2

sinh ✓ =
�2 + y0

p
3
p
�1 + (y0)2

The parameters a and b are subsequently reduced to

a =
x+ 2y � (2x+ y)y0
p
3
p
�1 + (y0)2

and b =
2x+ y � (x+ 2y)y0
p
3
p
�1 + (y0)2

.

It follows that solving the normalization equations for the parameters a, b, and ✓ yields

a =
x+ 2y � (2x+ y)y0
p
3
p
�1 + (y0)2

b =
2x+ y � (x+ 2y)y0
p
3
p
�1 + (y0)2

✓ = tanh�1

✓
2� y0

1� 2y0

◆
.

Having the transformation parameters a, b, and ✓ defined in terms of the components of an
arbitrary point (x, y, y0) of the one-jet of C defines the moving frame map ⇢ : j(1) (C) ! G

�
L2
�
, with

⇢(x, y, y0) =

0

BB@

�1+2y0p
3
p

�1+(y0)2
�2+y0p

3
p

�1+(y0)2
x+2y�(2x+y)y0p

3
p

�1+(y0)2

�2+y0p
3
p

�1+(y0)2
�1+2y0p

3
p

�1+(y0)2
2x+y�(x+2y)y0p

3
p

�1+(y0)2

0 0 1

1

CCA = A 2 G
�
L2
�
. (4.23)

4.4 Invariantization

We now produce the fundamental differential invariants for curves in the Lorentz-Minkowski plane.
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4.4.1 |y0| < 1

Substituting values of a, b, cosh ✓, and sinh ✓ from the moving frame map in (4.16) back into the
prolonged transformations of the derivatives (4.8) and (4.9), we obtain the invariants:

i(ȳ00) =
y00

(1� (y0)2)
3
2

(4.24)

i(ȳ(3)) =
�3y0(y00)2 � y(3) + (y0)2y(3)

(1� (y0)2)3
. (4.25)

All higher order differential invariants can be obtained via a combination of applying (4.6) to the
transformed derivatives and making the substitutions from the components of the moving frame
map (4.16).

Remark 4.4.1. Note the similarity between the invariant (4.24) for curves in the Lorentz-Minkowski

plane and the curvature of curves in the Euclidean plane.

4.4.2 |y0| > 1

Substituting values of a, b, cosh ✓, and sinh ✓ from the moving frame map in (4.23) back into the
prolonged transformations of the derivatives (4.8) and (4.9), we obtain the following invariants for
curves y = y(x) with |y0| > 1:

i(ȳ00) =
3
p
3y00

(�1 + (y0)2)
3
2

(4.26)

i(ȳ(3)) =
�27(�2 + y0)(y00)2 + 9y(3)((y0)2 � 1)

(1� (y0)2)3
. (4.27)

Remark 4.4.2. The second order invariant (4.26) can be multiplied by
1

3
p
3

to be consistent with

(4.24). Any constant multiple (or invariant multiple) of a differential invariant will be an invariant.
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Chapter 5

Curves and Surfaces in H
3
R

In this chapter we find differential invariants of curves and surfaces in the three-dimensional Heisen-
berg group H

3
R. The point set is the ordinary three-dimensional Cartesian space R3. The geometry

is defined by the geometric transformations described below. There are similarities between the
geometric transformations defining the geometry of H3

R and the transformations of the Euclidean
plane E2. These similarities will result in invariants of curves in the Euclidean plane being invariants
of curves in H

3
R as well.

5.1 Geometric Transformations

The group of geometric transformations defining the geometry of H3
R is the subgroup of GL4 (R)

defined by

G
�
H

3
R

�
=

8
>><

>>:

0

BB@

cos ✓ � sin ✓ 0 a
sin ✓ cos ✓ 0 b

1
2 (a sin ✓ � b cos ✓) 1

2 (a cos ✓ + b sin ✓) 1 c
0 0 0 1

1

CCA
���a, b, c, ✓ 2 R

9
>>=

>>;
. (5.1)

Identifying z = (x, y, z) 2 H
3
R with z = (x, y, z, 1)t 2 R4, then the action of A 2 G

�
H

3
R

�
on

H
3
R ⇠ R3 is given by Az = z = (x, y, z, 1)t, where

x = x cos ✓ � y sin ✓ + a (5.2)
y = x sin ✓ + y cos ✓ + b (5.3)

z = z + c+
1

2
(a sin ✓ � b cos ✓)x+

1

2
(a cos ✓ + b sin ✓) y. (5.4)

5.2 Curves

We look at curves C in R3 where y = y(x) and z = z(x) are described as functions of the independent
variable x. The space of n-jets are described by

J
(n)

�
R,R2

�
=
n⇣

x, y, z, y0, z0, y00, z00, . . . , y(n), z(n)
⌘o

⇠ R3+2n.
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5.2.1 Prolonged Transformations

We we will represent a point in J
(n)

�
R,R2

�
by z(n) =

�
x, y, z, y0, z0, y00, z00, . . . , y(n), z(n)

�
, where

coordinates are named so that the indicated derivatives of the dependent variables y and z are
taken with respect to the independent variable x. The implicit differential operator Dx is given by
Definition 12. We find the prolonged transformation operator from Definition 13 by first applying
Dx to (5.2), giving

Dxx = Dx (x cos ✓ � y sin ✓ + a) = cos ✓ � y0 sin ✓.

The prolonged transformation operator is

Dx =
1

(cos ✓ � y0 sin ✓)
Dx. (5.5)

Applying the prolonged transformation operator (5.5) to (5.3) and (5.4) gives the prolonged
action of G

�
H

3
R

�
to J

(1)
�
R,R2

�
. We have

y0 = Dxy =
sin ✓ + y0 cos ✓

cos ✓ � y0 sin ✓
(5.6)

z0 = Dxz =
2z0 + (a sin ✓ � b cos ✓) + (a cos ✓ + b sin ✓) y0

2 (cos ✓ � y0 sin ✓)
. (5.7)

The prolongation of G
�
H

3
R

�
to higher order jet spaces can be obtained by repeated application of

Dx:
y(k) = D

k
x (y) = Dx

⇣
y(k�1)

⌘
and z(k) = D

k
x (z) = Dx

⇣
z(k�1)

⌘
.

To order two we have

y00 =
y00

(cos ✓ � y0 sin ✓)3
and z00 =

y00 (a+ 2z0 sin ✓) + 2z00 (cos ✓ � y0 sin ✓)

2 (cos ✓ � y0 sin ✓)3
. (5.8)

5.2.2 Normalization and The Moving Frame

We now obtain a moving frame for the action of G
�
H

3
R

�
on curves by using the cross-section

K
(1)

⇢ J
(1)

�
R,R2

�
determined by setting x = 0, y = 0, z = 0 and y0 = 0. The resulting moving

frame map is determined by moving a point on a curve C to (0, 0, 0) 2 H
3
R and the rotating the

curve until the tangent line is in the xz-plane. The resulting normalization equations implicitly
defining the corresponding moving frame map are

x = x cos ✓ � y sin ✓ + a = 0

y = x sin ✓ + y cos ✓ + b = 0

z = z + c+
1

2
(a sin ✓ � b cos ✓)x+

1

2
(a cos ✓ + b sin ✓) y = 0

y0 =
sin ✓ + y0 cos ✓

cos ✓ � y0 sin ✓
= 0

The normalization equations x = 0, y = 0 and y0 = 0 are identical to the corresponding nor-
malization equations (3.11), (3.12), (3.13) for curves in the Euclidean plane covered in Chapter 3.
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Solving the indicated equations for a, b, c and ✓ follows immediately from the solutions appearing
in Chapter 3. The solutions are

a = �
x+ yy0q
1 + (y0)2

b =
xy0 � yq
1 + (y0)2

c = �z

✓ = arctan
�
�y0

�
.

As in the case of curves in the Euclidean plane, expressions for cos ✓ and sin ✓ appearing in
elements of G

�
H

3
R

�
(5.1) simplify when ✓ = arctan (�y0). Using properties of inverse trigonometric

functions gives

cos ✓ =
1q

1 + (y0)2
and sin ✓ = �

y0q
1 + (y0)2

.

Substituting the indicated expressions for a, b, c and ✓ back into A 2 G
�
H

3
R

�
gives the moving

frame map ⇢ : J (1)
�
R,R2

�
! G

�
H

3
R

�
:

⇢(x, y, z, y0, z0) =

0

BBBB@

1p
1+(y0)2

y0
p

1+(y0)2
0 �

x+yy0
p

1+(y0)2

�
y0

p
1+(y0)2

1p
1+(y0)2

0 xy0�y
p

1+(y0)2
y
2 �

x
2 1 �z

0 0 0 1

1

CCCCA
2 G

�
H

3
R

�
.

For a particular curve C given by (x, y(x), z(x)), the moving frame is the restriction of ⇢ to the jet
of C: ⇢ : j(n) (C) ! G

�
H

3
R

�
.

5.2.3 Invariantization

Substituting the moving frame components into (5.7), we find the first order differential invariant

i
�
z0
�
=

2z0 + y � xy0

2
q
1 + (y0)2

. (5.9)

Expressions for differential invariants of second order can be found by making the appropriate
substitutions into (5.8).

• i
�
y00
�
=

y00
⇣
1 + (y0)2

⌘3/2

• i
�
z00
�
=

�y00 (x+ yy0 + 2y0z0) + 2z00
⇣
1 + (y0)2

⌘

2
⇣
1 + (y0)2

⌘2
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Remark 5.2.1. Note that the invariants obtained from the invariantization of the derivatives y00,
y(3), y(4), etc. will be invariants of curves in the Euclidean plane. This is because the action of

G
�
H

3
R

�
on H

3
R ⇠ R3

projects onto the action of G
�
E2
�

on E2
and the prolonged differentiation

operators Dx are identical.

5.3 Surfaces

We look at surfaces S in R3 where z = z(x, y) is a function of the independent variables x
and y. On J

(n)
�
S,R3

�
, we are then considering jets of surfaces with points of the form z(n) =

(x, y, z, zx, zy, . . . zK , ) 2 J
(n)

�
R2,R1

�
, where K runs over partial derivative strings of length less

than or equal to n. For example, z(1) = (x, y, z, zx, zy) on J
(1)

�
R2,R1

�
.

5.3.1 Prolonged Transformations

We begin by finding the prolonged transformation operators described in Definition 16. The required
derivatives of (5.2) and (5.3) are

J =

0

@
Dxx Dyx

Dxy Dyy

1

A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

The corresponding prolonged differential operators are
0

@
Dx

Dy

1

A = J�T

0

@
Dx

Dy

1

A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆0

@
Dx

Dy

1

A ,

or
Dx = cos ✓Dx � sin ✓Dy and Dy = sin ✓Dx + cos ✓Dy. (5.10)

We find the prolonged action of G
�
H

3
R

�
to J

(n)
�
R2,R

�
by repeatedly applying Dx and Dy to

z. To second order we find

zx = cos ✓zx � sin ✓zy �
b

2
(5.11)

zy = sin ✓zx + cos ✓zy +
a

2
(5.12)

zxx = cos2 ✓zxx � 2 cos ✓ sin ✓zxy + sin2 ✓zyy (5.13)
zxy = cos ✓ sin ✓zxx +

�
2 cos2 ✓ � 1

�
zxy � sin ✓ cos ✓zyy (5.14)

zyy = sin2 ✓zxx + 2 cos ✓ sin ✓zxy + cos2 ✓zyy (5.15)

5.3.2 Normalization and The Moving Frame

We find a moving frame for the prolonged action of G
�
H

3
R

�
on surfaces by using the cross-section

K
(1)

⇢ J
(1)

�
R2,R1

�
defined by the equations

x = 0, y = 0, z = 0, and zy = 0.
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The cross-section corresponds geometrically to brining a point on a surface S to (0, 0, 0) of H3
R and

then rotating S so that its tangent plane at (0, 0, 0) contains the y-axis.
We now find the components of the moving frame map by solving the corresponding normaliza-

tion equations

x = x cos ✓ � y sin ✓ + a = 0

y = x sin ✓ + y cos ✓ + b = 0

z = z + c+
1

2
(a sin ✓ � b cos ✓)x+

1

2
(a cos ✓ + b sin ✓) y = 0

zy = sin ✓zx + cos ✓zy +
a

2
= 0

for the group parameters a, b, c and ✓.
Solving the first three equations we find

a = y sin ✓ � x cos ✓

b = � (x sin ✓ + y cos ✓)

z = �c.

Substituting a = y sin ✓ � x cos ✓ into the equation for zy = 0 gives

zy = sin ✓zx + cos ✓zy +
y sin ✓ � x cos ✓

2
= 0.

After doing some algebra we have
⇣
zx +

y

2

⌘
sin ✓ +

⇣
zy �

x

2

⌘
cos ✓ = 0.

This gives
tan ✓ =

x� 2zy
2zx + y

.

We take ✓ = tan�1
⇣
x�2zy
2zx+y

⌘
. With properties of inverse trigonometric functions we have

cos ✓ =
2zx + y

�
and sin ✓ =

x� 2zy
�

,

where � =
q

(2zx + y)2 + (2zy � x)2.
Substituting the indicated values of a, b, c, cos ✓ and sin ✓ into an element A 2 G

�
H

3
R

�
, we find

the moving frame map ⇢ : J (1)
�
R2,R

�
! G

�
H

3
R

�
is given by

⇢ (x, y, z, zx, zy) =

0

BBB@

2zx+y
�

2zy�x
� 0 �x(2zx+y)+y(x�2zy)

�
x�2zy

�
2zx+y

� 0 �
x(x�2zy)+y(2zx+y)

�
y
2 �

x
2 1 �z

0 0 0 1

1

CCCA
2 G

�
H

3
R

�
. (5.16)

Restricted to a surface S given by the graph of a function z = z(x, y) and its jet, the map
⇢ : j(n) (S) ! G

�
H

3
R

�
becomes a moving frame for the surface S.
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5.3.3 Invariantization

With the moving frame map at hand, we can invariantize the higher order derivatives to find
differential invariants of all orders. We invariantize the remaining derivatives up to order to two
demonstrate. This amounts to substitution of the parameters in the moving frame map (5.16)
into (5.11), (5.13), (5.14), and (5.15). To simplify the presentation of the invariants we will let
F = 2zx + y and G = x� 2zy. With these identifications the moving frame is

⇢ (x, y, z, zx, zy) =

0

BB@

F
�

�G
� 0 �xF+yG

�
G
�

F
� 0 �

xG+yF
�

y
2 �

x
2 1 �z

0 0 0 1

1

CCA 2 G
�
H

3
R

�
.

The resulting differential invariants are

• i(zx) =
2Fzx +Gx+ Fy � 2Gzy

2�
=

1

2

p
F 2 +G2 =

1

2
�

• i(zxx) =
F 2zxx � 2FGzxy +G2zyy

�2

• i(zxy) =
FGzxx +

�
F 2

�G2
�
zxy � FGzyy

�2

• i(zyy) =
F 2zyy + 2FGzxy +G2zxx

�2
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Chapter 6

Curves and Surfaces in H
3
L

In this chapter we find differential invariants of curves and surfaces in the three-dimensional Heisen-
berg group H

3
L. The point set is the same point set as the H

3
R, but the geometry is changed

as a result of the geometric transformations. This geometry compares to the geometry of the
Lorentz-Minkowski plane in the same way that the geometry of H3

R compares to the geometry of
the Euclidean plane. Comparing the matrices defining the indicated geometries, we see that the
2 ⇥ 2 matrix in the upper left of (6.1) is identical to the 2 ⇥ 2 matrix in the upper left of (4.1),
while the 2 ⇥ 2 matrix in the upper left of (5.1) is identical to the 2 ⇥ 2 matrix in the upper left
of (3.1). The calculations for finding differential invariants of curves and surfaces in this geometry
will be similar in nature to combining the calculations of Chapter 4 and Chapter 5.

6.1 Geometric Transformations

As before we identify a point (x, y, z) 2 R3 with z = (x, y, z, 1)t 2 R4. The group of geometric
transformations defining the geometry of H3

L is

G
�
H

3
L

�
=

8
>><

>>:

0

BB@

cosh ✓ sinh ✓ 0 a
sinh ✓ cosh ✓ 0 b

1
2 (a sinh ✓ � b cosh ✓) 1

2 (a cosh ✓ � b sinh ✓) 1 c
0 0 0 1

1

CCA
���a, b, c, ✓ 2 R

9
>>=

>>;
. (6.1)

The action of A 2 G
�
H

3
L

�
on R3

⇠ H
3
L is given by Az = z = (x, y, z, 1)t, where

x = x cosh ✓ + y sinh ✓ + a (6.2)
y = x sinh ✓ + y cosh ✓ + b (6.3)

z = z + c+
1

2
(a sinh ✓ � b cosh ✓)x+

1

2
(a cosh ✓ � b sinh ✓) y. (6.4)

6.2 Curves

We look at curves C in H
3
L where y = y(x) and z = z(x) are functions of the independent variable

x. The space of n-jets are analyzed in the Cartesian space

J
(n)

�
R,R2

�
=
n⇣

x, y, z, y0, z0, y00, z00, . . . , y(n), z(n)
⌘o

⇠ R3+2n.
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6.2.1 Prolonged Transformations

We we will represent a point in J
(n)

�
R,R2

�
by z(n) =

��
x, y, z, y0, z0, y00, z00, . . . , y(n), z(n)

� 
, where

derivatives of the dependent variables y and z are taken with respect to the independent variable
x. The implicit differential operator Dx is given by Definition 12. Applying Dx to (6.2) gives

Dxx = Dx (x cosh ✓ + y sinh ✓ + a) = cosh ✓ + y0 sinh ✓.

The prolonged transformation operator from Definition 13 is then

Dx =
1

cosh ✓ + y0 sinh ✓
Dx. (6.5)

We now apply (6.5) to the transformed coordinates (6.3) and (6.4) to obtain the prolonged
action G

�
H

3
L

�
of to J

(1)
�
R,R2

�
. We have

y0 = Dxy =
sinh ✓ + yx cosh ✓

cosh ✓ + yx sinh ✓
(6.6)

z0 = Dxz =
zx +

1
2 (a sinh ✓ � b cosh ✓) + 1

2 (a cosh ✓ � b sinh ✓) yx
cosh ✓ + yx sinh ✓

. (6.7)

We will be able to find a moving frame map for curves in H
3
L on J

(1)
�
R,R2

�
.

The prolongation of the action of G
�
H

3
L

�
to higher order jet spaces is obtained by repeated

application of Dx:

y(k) = D
k
x (y) = Dx

⇣
y(k�1)

⌘
and z(k) = D

k
x (z) = Dx

⇣
z(k�1)

⌘
.

Since we will be able to find a moving frame map at order one, we will record the transformed
derivatives to order two for the purposes of illustrating the differential invariants. To order two we
have

y00 =
y00

(cosh ✓ + y0 sinh ✓)3
and z00 =

y00 (a� 2z0 sinh ✓) + 2 (cosh ✓ + y0 sinh ✓) z00

2 (cosh ✓ + y0 sinh ✓)3
. (6.8)

6.2.2 Normalization and The Moving Frame

Comparing (6.2), (6.3), and (6.6) with the transformation laws for x (4.4), y (4.5), and y0 (4.7)
for curves in the Lorentz-Minkowski plane, we see that they are identical. For the same reasons
discussed in Chapter 4, our construction of the moving map will split into cases based on whether
|y0| < 1 or |y0| > 1. The resulting moving frame maps are similar to the corresponding moving
frames in Chapter 4.

Case I: |y0| < 1

We will start with the case where |y0| < 1. We assume this condition holds for all x, otherwise our
work applies on open intervals.

We obtain a moving frame for the action of G
�
H

3
L

�
on curves by using the cross-section K

(1)
⇢

J
(1)

�
R,R2

�
determined by setting x = 0, y = 0, z = 0 and y0 = 0. This geometrically equivalent
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to moving a point on the curve C to (0, 0, 0) 2 H
3
L and applying a hyperbolic rotation until the

tangent line is in the xz-plane.
Using the group transformation laws found in (6.2), (6.3), (6.4), and (6.8), we obtain the nor-

malization equations

x = x cosh ✓ + y sin ✓ + a = 0

y = x sinh ✓ + y cosh ✓ + b = 0

z = z + c+
1

2
(a sinh ✓ � b cosh ✓)x+

1

2
(a cosh ✓ � b sinh ✓) y = 0

y0 =
sinh ✓ + y0 cos ✓

cosh ✓ + y0 sinh ✓
= 0.

Note that the normalization equations x = 0, y = 0, y0 = 0 are identical to the normalization
equations (4.10), (4.11), (4.12) for curves with |y0| < 1 in the Lorentz-Minkowski plane. The
solutions to the indicated equations for the group parameters a, b, and ✓ are

a =
yy0 � xq
1� (y0)2

, b =
xy0 � xq
1� (y0)2

, and ✓ = tanh�1
�
�y0

�
.

This also gives

cosh ✓ =
1q

1� (y0)2
and sinh ✓ = �

y0q
1� (y0)2

.

Substituting the indicated expressions for a, b, cosh ✓ and sinh ✓ into the normalization equation
z = 0 gives

c = �z.

Substituting the indicated expressions for a, b, c and ✓ back into A 2 G
�
H

3
L

�
as in (6.1) gives

the moving frame map ⇢ : J (1)
�
R,R2

�
! G

�
H

3
L

�
:

⇢(x, y, z, y0, z0) =

0

BBBB@

1p
1�(y0)2

�y0
p

1�(y0)2
0 yy0�x

p
1�(y0)2

�y0
p

1�(y0)2
1p

1�(y0)2
0 xy0�y

p
1�(y0)2

y
2 �

x
2 1 �z

0 0 0 1

1

CCCCA
2 G

�
H

3
L

�
(6.9)

Case II: |y0| > 1

We now consider the case where |y0| > 1. We assume this condition holds for all x, or we work on
open intervals.

We obtain a moving frame for the action of G
�
H

3
L

�
on curves by using the cross-section K

(1)
⇢

J
(1)

�
R,R2

�
determined by setting x = 0, y = 0, z = 0 and y0 = 2. The is geometrically equivalent

to moving a point on the curve C to (0, 0, 0) 2 H
3
L and applying a hyperbolic rotation until y0 = 2.
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Using the group transformation laws found in (6.2), (6.3), (6.4), and (6.8), the normalization
equations are

x = x cosh ✓ + y sin ✓ + a = 0

y = x sinh ✓ + y cosh ✓ + b = 0

z = z + c+
1

2
(a sinh ✓ � b cosh ✓)x+

1

2
(a cosh ✓ � b sinh ✓) y = 0

y0 =
sinh ✓ + y0 cos ✓

cosh ✓ + y0 sinh ✓
= 2.

Comparing the above with the normalization equations (4.17), (4.18), (4.19) for curves in the
Lorentz-Minkowski plane with |y0| > 1, we see that the equations for x, y, and y0 are identical. The
solutions to the indicated equations for the group parameters a, b, and ✓ are

a =
x+ 2y � (2x+ y)y0
p
3
p
�1 + (y0)2

, b =
2x+ y � (x+ 2y)y0
p
3
p
�1 + (y0)2

, and ✓ = tanh�1

✓
2� y0

1� 2y0

◆

As in Chapter 4, we have

cosh ✓ =
�1 + 2y0

p
3
p
�1 + (y0)2

and sinh ✓ =
�2 + y0

p
3
p
�1 + (y0)2

.

Substituting the indicated expressions for a, b, cosh ✓ and sinh ✓ into the normalization equation
z = 0 gives

c = �z.

Substituting the indicated expressions for a, b, c and ✓ back into A 2 G
�
H

3
L

�
gives the moving

frame map ⇢ : J (1)
�
R,R2

�
! G

�
H

3
L

�
:

⇢(x, y, z, y0, z0) =

0

BBBB@

�1+2y0p
3
p

�1+(y0)2
�2+y0p

3
p

�1+(y0)2
0 x+2y�(2x+y)y0p

3
p

�1+(y0)2

�2+y0p
3
p

�1+(y0)2
�1+2y0p

3
p

�1+(y0)2
0 2x+y�(x+2y)y0p

3
p

�1+(y0)2
y
2 �

x
2 1 �z

0 0 0 1

1

CCCCA
2 G

�
H

3
L

�
. (6.10)

6.2.3 Invariantization

Case I: |y0| < 1

Substituting the moving frame components from (6.9) into (6.7) and (6.8) we find the differential
invariants up to order two are:

• i
�
z0
�
=

y � xy0 + 2z0

2
q

1� (y0)2

• i
�
y00
�
=

y00

⇣
1� (y0)2

⌘ 3
2

• i
�
z00
�
=

(�x+ yy0 + 2y0z0) y00 � 2
⇣
�1 + (y0)2

⌘
z00

2
⇣
1� (y0)2

⌘
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Case II: |y0| > 1

Substituting the moving frame components from (6.10) into (6.7) and (6.8) we find the differential
invariants up to order two are:

• i
�
z0
�
=

p
3 (�y + xy0 + 2z0)

2
q
1� (y0)2

• i
�
y00
�
= �

3
p
3y00

⇣
1� (y0)2

⌘ 3
2

• i
�
z00
�
=

3 (�x+ y (�2 + y0)� 4z0 + 2y0 (x+ z0)) y00 � 6
⇣
�1 + (y00)2

⌘
z00

2
⇣
1� (y0)2

⌘

Remark 6.2.1. Note that the invariants obtained from the invariantization of the derivatives y00,
y(3), y(4), etc. will be invariants of curves in the Lorentz-Minkowski plane. This is because the action

of G
�
H

3
L

�
on H

3
L ⇠ R3

projects onto the action of G
�
L2
�

on L2
and the prolonged differentiation

operators Dx are identical.

6.3 Surfaces

We now look at surfaces S in R3
⇠ H

3
L where z = z(x, y) is a function of the independent

variables x and y. As before we are considering jets of surfaces with points of the form z(n) =
(x, y, z, zx, zy, . . . zN ) 2 J

(n)
�
R2,R1

�
. For example, z(1) = (x, y, z, zx, zy) represents a point in

J
(1)

�
R2,R1

�
.

6.3.1 Prolonged Transformations

The prolonged transformation operators are described in Definition 16. The required derivatives of
(6.2) and (6.3) are

J =

0

@
Dxx Dyx

Dxy Dyy

1

A =

✓
cosh ✓ sinh ✓
sinh ✓ cosh ✓

◆

The corresponding prolonged differential operators are
0

@
Dx

Dy

1

A = J�T

0

@
Dx

Dy

1

A =

✓
cosh ✓ � sinh ✓
� sinh ✓ cosh ✓

◆0

@
Dx

Dy

1

A ,

or
Dx = cosh ✓Dx � sinh ✓Dy and Dy = � sinh ✓Dx + cosh ✓Dy. (6.11)

45



We find the prolonged action of G
�
H

3
L

�
to J

(n)
�
R2,R

�
by repeatedly applying Dx and Dy to z

in (6.4). To second order we have

zx = cosh ✓zx � sinh ✓zy �
b

2
(6.12)

zy = � sinh ✓zx + cosh ✓zy +
a

2
(6.13)

zxx = cosh2 ✓zxx � 2 cosh ✓ sinh ✓zxy + sinh2 ✓zyy (6.14)
zxy = � cosh ✓ sinh ✓zxx +

�
2 cosh2 ✓ + sinh2 ✓

�
zxy � cosh ✓ sinh ✓zyy (6.15)

zyy = sinh2 ✓zxx � 2 cosh ✓ sinh ✓zxy + cosh2 ✓zyy (6.16)

6.3.2 Normalization and The Moving Frame

As was the case for curves, we will need to construct two different moving frame maps for surfaces.

The cases split depending on the quantity
����
2zy � x

2zx + y

���� and whether we can solve zy = 0 or zx = 0 for

the group parameters.

Case I:
����
2zy � x

2zx + y

���� < 1 and Solving zy = 0

We first consider the case where we set zy = 0 in the normalization equations. We use the cross-
section K

(1)
⇢ J

(1)
�
R2,R

�
defined by

x = 0, y = 0, z = 0, and zy = 0. (6.17)

The cross-section corresponds to moving a point on the surface to (0, 0, 0) and then applying
a hyperbolic rotation to bring the normal vector of the surface into the xz-plane. The resulting
normalization equations are

x = x cosh ✓ + y sinh ✓ + a = 0

y = x sinh ✓ + y cosh ✓ + b = 0

z = z + c+
1

2
(a sinh ✓ � b cosh ✓)x+

1

2
(a cosh ✓ � b sinh ✓) y = 0

zy = � sinh ✓zx + cosh ✓zy +
a

2
= 0.

The equations x = 0 and zy = 0 can be solved for a and ✓. The normalization equation x = 0
gives

a = � (x cosh ✓ + y sinh ✓) .

Substitution into zy = 0 and some algebra gives

�

⇣
zx +

y

2

⌘
sinh ✓ +

⇣
zy �

x

2

⌘
cosh ✓ = 0.

Algebra and properties of hyperbolic trig functions then give

✓ = tanh�1

✓
2zy � x

2zx + y

◆
.
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With the expression for ✓, we then find simplified expressions for cosh ✓ and sinh ✓:

cosh ✓ =
2zx + y

�
and sinh ✓ =

2zy � x

�
,

where � =
q

(2zx + y)2 � (2zy � x)2.
With expressions for cosh ✓ and sinh ✓, we can now find a, b, and c from the normalization

equations:

a = �
2 (xzx + yzy)

�

b =
x (x� 2zy)� y (2zx + y)

�
c = �z

Making substitutions for the indicated expressions of a, b, c, cosh ✓, and sinh ✓ into A 2 G
�
H

3
L

�

as given in (6.1), we find the moving map ⇢ : J (1)
�
R2,R

�
! G

�
H

3
L

�
to be

⇢ (x, y, z, zx, zy) =

0

BBB@

2zx+y
�

2zy�x
� 0 �

2(xzx+yzy)
�

2zy�x
�

2zx+y
� 0 x(x�2zy)�y(2zx+y)

�
y
2 �

x
2 1 �z

0 0 0 1

1

CCCA
2 G

�
H

3
L

�
. (6.18)

As usual, restricted to a surface S given by the graph of a function z = z(x, y) and its jet, the map
⇢ : j(n) (S) ! G

�
H

3
L

�
becomes a moving frame for the surface S.

Case II:
����
2zx + y

2zy � x

���� < 1 and Solving zx = 0

In the second case we set zx = 0 in the cross-section defining the moving frame and the normalization
equations. The cross-section is

x = 0, y = 0, z = 0, and zx = 0. (6.19)

The cross-section corresponds to moving a point on the surface to (0, 0, 0) and then applying a
hyperbolic rotation to bring the normal vector into the yz-plane. The resulting normalization
equations are

x = x cosh ✓ + y sinh ✓ + a = 0

y = x sinh ✓ + y cosh ✓ + b = 0

z = z + c+
1

2
(a sinh ✓ � b cosh ✓)x+

1

2
(a cosh ✓ � b sinh ✓) y = 0

zx = cosh ✓zx � sinh ✓zy �
b

2
.

The required algebra to solve the normalization equations is near identical to the first case,
except we begin by solving the equations y = 0 and zx = 0 for b and ✓.
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The normalization equation y = 0 gives

b = � (x sinh ✓ + y cosh ✓) .

Substitution into zx = 0 and some algebra gives

�

⇣
zy �

x

2

⌘
sinh ✓ +

⇣
zx +

y

2

⌘
cosh ✓ = 0.

Algebra and properties of hyperbolic trig functions then give

✓ = tanh�1

✓
2zx + y

2zy � x

◆
.

With the expression for ✓, we then find simplified expressions for cosh ✓ and sinh ✓:

cosh ✓ =
2zy � x

�
and sinh ✓ =

2zx + y

�
,

where � =
q

(2zy � x)2 � (2zx + y)2. With expressions for cosh ✓ and sinh ✓, we can now solve the
remaining normalization equations for a, b, and c:

a = �
2 (xzx + yzy)

�

b =
x (x� 2zy)� y (2zx + y)

�
c = �z

Making substitutions for the indicated expressions of a, b, c, cosh ✓, and sinh ✓ into A 2 G
�
H

3
L

�

as given in (6.1), we find the moving map ⇢ : J (1)
�
R2,R

�
! G

�
H

3
L

�
to be

⇢ (x, y, z, zx, zy) =

0

BBB@

2zy�x
�

2zx+y
� 0 x(x�2zy)�y(2zx+y)

�
2zx+y

�
2zy�x

� 0 �
2(xzx+yzy)

�
y
2 �

x
2 1 �z

0 0 0 1

1

CCCA
2 G

�
H

3
L

�
. (6.20)

The moving frame map for a surface S given by the graph of a function z = z(x, y) is then
⇢ : j(n) (S) ! G

�
H

3
L

�
.

6.3.3 Invariantization

Finally, we find the differential invariants up to order two for surfaces in H
3
L. In each case, this

amounts to substituting the components of the moving frame map into the appropriate expressions
from (6.12)–(6.16). Note that in first case, the invariant i(zy) is trivial (we normalized zy = 0),
while in the second case the invariant i(zx) = 0. For purposes of simplifying the expressions of the
invariants, we let F = 2zx + y and G = 2zy � x.

With the indicated simplifications, the respective moving frames are

⇢ (x, y, z, zx, zy) =

0

BB@

F
�

G
� 0 �

xF+yG
�

G
�

F
� 0 �

xG+yF
�

y
2 �

x
2 1 �z

0 0 0 1

1

CCA ,
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and

⇢ (x, y, z, zx, zy) =

0

BBB@

G
�

F
� 0 �

xG+yF
�

F
�

G
� 0 �

xF+yG
�

y
2 �

x
2 1 �z

0 0 0 1

1

CCCA
.

Case I:
����
2zy � x

2zx + y

���� < 1 and zy = 0

• i (zx) =
xG+ yF + 2Fzx � 2Gzy

2�
=

xG+ yF + 2Fzx � 2Gzy

2
p
F 2 �G2

• i (zxx) =
G2zyy � 2FGzyy + F 2zxx

�2
=

G2zyy � 2FGzyy + F 2zxx
F 2 �G2

• i (zxy) =
�FGzyy + (F 2 +G2)zxy � FGzxx

�2
=

�FGzyy + (F 2 +G2)zxy � FGzxx
F 2 �G2

• i (zyy) =
F 2zyy � 2FGzxy +G2zxx

�2
=

F 2zyy � 2FGzxy +G2zxx
F 2 �G2

Case II:
����
2zx + y

2zy � x

���� < 1 and Solving zx = 0

• i (zy) =
�xG� yF � 2Fzx + 2Gzy

2�
=

�xG� yF � 2Fzx + 2Gzy

2
p
G2 � F 2

• i (zxx) =
F 2zyy � 2FGzyy +G2zxx

�2
=

F 2zyy � 2FGzyy +G2zxx
G2 � F 2

• i (zxy) =
�FGzyy + (F 2 +G2)zxy � FGzxx

�2
=

�FGzyy + (F 2 +G2)zxy � FGzxx
G2 � F 2

• i (zyy) =
G2zyy � 2FGzyy + F 2zxx

�2
=

G2zyy � 2FGzyy + F 2zxx
G2 � F 2

49



Bibliography

[1] Manfredo P. do Carmo, Differential geometry of curves & surfaces, Dover Publications, Inc., Mineola, NY, 2016.
Revised & updated second edition of [ MR0394451]. MR3837152

[2] Mark Fels and Peter J. Olver, Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math.
55 (1999), no. 2, 127–208. MR1681815 (2000h:58024)

[3] Mark L. Green, The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces,
Duke Math. J. 45 (1978), no. 4, 735–779. MR518104 (80a:53011)

[4] P. Griffiths, On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions

in differential geometry, Duke Math. J. 41 (1974), 775–814. MR0410607 (53 #14355)

[5] Heinrich W. Guggenheimer, Differential geometry, Dover Publications Inc., New York, 1977. Corrected reprint
of the 1963 edition, Dover Books on Advanced Mathematics. MR0493768 (58 #12737)

[6] Thomas A. Ivey and Joseph M. Landsberg, Cartan for beginners, Graduate Studies in Mathematics, vol. 175,
American Mathematical Society, Providence, RI, 2016. Differential geometry via moving frames and exterior
differential systems, Second edition [of MR2003610]. MR3586335

[7] Rafael López, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom.
7 (2014), no. 1, 44–107. MR3198740

[8] Elizabeth Louise Mansfield, A practical guide to the invariant calculus, Cambridge Monographs on Applied and
Computational Mathematics, vol. 26, Cambridge University Press, Cambridge, 2010. MR2656212 (2011j:58012)

[9] Peter J. Olver, Applications of Lie groups to differential equations, Second, Graduate Texts in Mathematics,
vol. 107, Springer-Verlag, New York, 1993. MR1240056 (94g:58260)

[10] , Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995. MR1337276
(96i:58005)

[11] , Classical invariant theory, London Mathematical Society Student Texts, vol. 44, Cambridge University
Press, Cambridge, 1999. MR1694364 (2001g:13009)

[12] Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR719023

[13] , Elementary differential geometry, second, Elsevier/Academic Press, Amsterdam, 2006. MR2351345
(2008k:53001)

[14] Andrew Pressley, Elementary differential geometry, Second, Springer Undergraduate Mathematics Series,
Springer-Verlag London, Ltd., London, 2010. MR2598317

[15] R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997.
Cartan’s generalization of Klein’s Erlangen program, With a foreword by S. S. Chern. MR1453120 (98m:53033)

50


	Introduction
	Historical
	Outline of Thesis

	Technical Material
	Groups and Group Actions
	Prolonged Actions and Jet Spaces
	Prolonged G-Actions on Curves in R2
	Prolonged G-actions on Curves in R3
	Prolonged G-actions on Surfaces in R3

	Fels-Olver Method of Moving Frames
	Moving Frame Maps
	Cross-Sections, Normalization, Construction of Moving Frame Maps
	The Invariantization Process


	Curves in the Euclidean Plane
	Geometric Transformations
	Prolonged Transformations
	Normalization and The Moving Frame
	Invariantization

	Curves in the Lorentz-Minkowski Plane
	Geometric Transformations
	Prolonged Transformations
	Normalization and The Moving Frame
	|y'| < 1
	|y'| > 1

	Invariantization
	69640972 y86418188 < 1
	69640972 y86418188 > 1


	Curves and Surfaces in H3R
	Geometric Transformations
	Curves
	Prolonged Transformations
	Normalization and The Moving Frame
	Invariantization

	Surfaces
	Prolonged Transformations
	Normalization and The Moving Frame
	Invariantization


	Curves and Surfaces in H3L
	Geometric Transformations
	Curves
	Prolonged Transformations
	Normalization and The Moving Frame
	Invariantization

	Surfaces
	Prolonged Transformations
	Normalization and The Moving Frame
	Invariantization



